On slim rectangular lattices

نویسندگان

چکیده

Let L be a slim, planar, semimodular lattice (slim means that it does not contain an $${{\textsf{M}}}_3$$ -sublattice). We call the interval $$I = [o, i]$$ of rectangular, if there are complementary $$a, b \in I$$ such is to left b. claim rectangular slim also lattice. will present some applications, including recent result G. Czédli. In paper with E. Knapp about dozen years ago, we introduced natural diagrams for lattices. Five later, Czédli $${\mathcal {C}}_1$$ -diagrams. prove they same.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slim Semimodular Lattices. I. A Visual Approach

A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. Slim semimodular lattices play the main role in [3], where lattice theory is applied to a purely group theoretical problem. After exploring some easy properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.

متن کامل

A note on distinct distances in rectangular lattices

In his famous 1946 paper, Erdős [4] proved that the points of a √ n× √ n portion of the integer lattice determine Θ(n/ √ log n) distinct distances, and a variant of his technique derives the same bound for √ n × √ n portions of several other types of lattices. In this note we consider distinct distances in rectangular lattices of the form {(i, j) | 0 ≤ i ≤ n1−α, 0 ≤ j ≤ n}, for some 0 < α < 1/2...

متن کامل

Nonperiodic Sampling of Bandlimited Functions on Unions of Rectangular Lattices

It is shown that a function f 2 L p ?R; R], 1 p < 1, is completely determined by the samples of ^ f on sets = m i=1 fn=2r i g n2Z where R = P r i , and r i =r j is irrational if i 6 = j, and of ^ f (j) (0) for j = 1; : : :; m ? 1. If f 2 C m?2?k ?R; R], then the samples of ^ f on and only the rst k derivatives of ^ f at 0 are required to completely determine f. Higher dimensional analogues of t...

متن کامل

Slim Semimodular Lattices. II. A Description by Patchwork Systems

Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...

متن کامل

The Dimension of the Rectangular Product of Lattices

In this paper, we determine the dimension of the rectangular product of certain nite lattices. In fact, if L1 and L2 be nite lattices which satisfy the some conditions, then we have dim(L1 L2) = dim(L1) + dim(L2) 1:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Scientiarum Mathematicarum

سال: 2023

ISSN: ['0324-5462', '2064-8316', '0001-6969']

DOI: https://doi.org/10.1007/s44146-023-00058-x